
Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 1

UNIT – V

Sorting and Searching: Sorting by selection, sorting by exchange, sorting by insertion, sorting by

partitioning, binary search.

Structures: Basics of structures, structures and functions, arrays of structures, pointers to structures,

self-referential structures, table lookup, typedef, unions, bit-fields.

Some other Features: Variable-length argument lists, formatted input-Scanf, file access, Error

handling-stderr and exit, Line Input and Output, Miscellaneous Functions.

5.1 SORTING BY SELECTION

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-

based algorithm in which the list is divided into two parts, the sorted part at the left end and the

unsorted part at the right end. Initially, the sorted part is empty and the unsorted part is the

entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues moving

unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case complexities are

of Ο(n2), where n is the number of items.

How Selection Sort Works?

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first position

where 14 is stored presently, we search the whole list and find that 10 is the lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value in the

list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a linear

manner.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 2

We find that 14 is the second lowest value in the list and it should appear at the second place.

We swap these values.

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process −

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 3

Now, let us learn some programming aspects of selection sort.

Algorithm

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

Step 5 − Repeat until list is sorted

Program:
#include<stdio.h>

void main(void)

{

 int a[100],n,i,j,first,temp,k;

 printf("\n enter the size");

 scanf("%d",&n);

 for (i = 0; i < n; i++)

 {

 printf("\n enter %d element",i+1);

 scanf("%d",&a[i]);

 }

 // algorithm

 for (i= 0; i <n-1; i++)

 {

 first = i;

 for (j=i+1;j<n; j++)

 {

 if (a[j] < a[first])

 first = j;

 }

 temp = a[first];

 a[first] = a[i];

 a[i] = temp;

 printf("\n AFTER %d pass",i+1);

 for (k = 0; k < n; k++)

 {

 printf(" %d",a[k]);

 }

 }//end algorithm

 printf("\n elements after sorting \n");

 for (i = 0; i < n; i++)

 {

 printf(" %d ",a[i]);

 }

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 4

5.2 SORTING BY EXCHANGE

Exchange Sort

The exchange sort is similar to its cousin, the bubble sort, in that it compares

elements of the array and swaps those that are out of order. (Some people refer to the

"exchange sort" as a "bubble sort".) The difference between these two sorts is the

manner in which they compare the elements. The exchange sort compares the first

element with each following element of the array, making any necessary swaps.

When the first pass through the array is complete, the exchange sort then takes the

second element and compares it with each following element of the array swapping

elements that are out of order. This sorting process continues until the entire array is

ordered.

Let's examine our same table of elements again using an exchange sort for descending

order. Remember, a "pass" is defined as one full trip through the array comparing and

if necessary, swapping elements

Array at beginning: 84 69 76 86 94 91

After Pass #1: 94 69 76 84 86 91

After Pass #2: 94 91 69 76 84 86

After Pass #3: 94 91 86 69 76 84

After Pass #4: 94 91 86 84 69 76

After Pass #5 (done): 94 91 86 84 76 69

The exchange sort, in some situations, is slightly more efficient than the bubble sort.

It is not necessary for the exchange sort to make that final complete pass needed by

the bubble sort to determine that it is finished.

Program:

#include<stdio.h>

void main()

{

 int a[100],n,i,j,k,temp;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 5

 printf("\n enter n value ");

 scanf("%d",&n);

 for (i = 0; i < n; i++)

 {

 printf("\n enter %d element",i+1);

 scanf("%d",&a[i]);

 }

 //Algorithm

 for(i = 0; i < (n -1); i++)

 {

 for (j=(i + 1); j < n; j++)

 {

 if (a[i] > a[j])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 printf("\n AFTER %d pass",i+1);

 for (k = 0; k < n; k++)

 {

 printf(" %d",a[k]);

 }

 }

 //Some output

 for (i = 0; i < n; i++)

 {

 printf("\n a[%d] =%d",i,a[i]);

 }

}

5.3 SORTING BY INSERTION

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is

always sorted. For example, the lower part of an array is maintained to be sorted. An element

which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place and then it has to

be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted

sub-list (in the same array). This algorithm is not suitable for large data sets as its average and

worst case complexity are of Ο(n2), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 6

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the

sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the sorted sub-list

remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 7

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now we shall

see some programming aspects of insertion sort.

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive simple

steps by which we can achieve insertion sort.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Program:
#include<stdio.h>

void main()

{

 int a[100],size,i,j,key,k;

 printf("\n element n value");

 scanf("%d",&size);

 for (i = 0; i < size; i++)

 {

 printf("Enter a number: ");

 scanf("%d",&a[i]);

 }

 for(i = 1; i < size; i++)

 {

 key = a[i];

 for (j = i - 1; (j >= 0) && (a[j] > key); j--)

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 8

 {

 a[j+1] = a[j];

 }

 a[j+1] = key;

 printf("\n AFTER THE %d PASS",i);

 for(k=0;k<size;k++)

 printf(" %d",a[k]);

 }

 printf("\n elemets after sorting");

 for (i = 0; i < size; i++)

 {

 printf(" \n a[%d]=%d",i,a[i]);

 }

}

5.4 SORTING BY PARTITIONING / Quick Sort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the

given array around the picked pivot. There are many different versions of quickSort that pick

pivot in different ways.

1. Always pick first element as pivot.

2. Always pick last element as pivot (implemented below)

3. Pick a random element as pivot.

4. Pick median as pivot.

The key process in quickSort is partition(). Target of partitions is, given an array and an element

x of array as pivot, put x at its correct position in sorted array and put all smaller elements

(smaller than x) before x, and put all greater elements (greater than x) after x. All this should be

done in linear time.

Pseudo Code for recursive QuickSort function :

/* low --> Starting index, high --> Ending index */

quickSort(arr[], low, high)

{

 if (low < high)

 {

 /* pi is partitioning index, arr[pi] is now

 at right place */

 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1); // Before pi

 quickSort(arr, pi + 1, high); // After pi

 }

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 9

Partition Algorithm
There can be many ways to do partition, following pseudo code adopts the method given in

CLRS book. The logic is simple, we start from the leftmost element and keep track of index of

smaller (or equal to) elements as i. While traversing, if we find a smaller element, we swap

current element with arr[i]. Otherwise we ignore current element.

/* low --> Starting index, high --> Ending index */

quickSort(arr[], low, high)

{

 if (low < high)

 {

 /* pi is partitioning index, arr[pi] is now

 at right place */

 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1); // Before pi

 quickSort(arr, pi + 1, high); // After pi

 }

}

Pseudo code for partition()
/* This function takes last element as pivot, places

 the pivot element at its correct position in sorted

 array, and places all smaller (smaller than pivot)

 to left of pivot and all greater elements to right

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 10

 of pivot */

partition (arr[], low, high)

{

 // pivot (Element to be placed at right position)

 pivot = arr[high];

 i = (low - 1) // Index of smaller element

 for (j = low; j <= high- 1; j++)

 {

 // If current element is smaller than the pivot

 if (arr[j] < pivot)

 {

 i++; // increment index of smaller element

 swap arr[i] and arr[j]

 }

 }

 swap arr[i + 1] and arr[high])

 return (i + 1)

}

Illustration of partition() :
arr[] = {10, 80, 30, 90, 40, 50, 70}

Indexes: 0 1 2 3 4 5 6

low = 0, high = 6, pivot = arr[h] = 70

Initialize index of smaller element, i = -1

Traverse elements from j = low to high-1

j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 0

arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j

 // are same

j = 1 : Since arr[j] > pivot, do nothing

// No change in i and arr[]

j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 1

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 11

arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30

j = 3 : Since arr[j] > pivot, do nothing

// No change in i and arr[]

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 2
arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped

j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]

i = 3

arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped

We come out of loop because j is now equal to high-1.

Finally we place pivot at correct position by swapping

arr[i+1] and arr[high] (or pivot)
arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped

Now 70 is at its correct place. All elements smaller than

70 are before it and all elements greater than 70 are after

it.

5.5 BINARY SEARCH

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. For this algorithm to work properly, the

data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the collection. If

a match occurs, then the index of item is returned. If the middle item is greater than the item,

then the item is searched in the sub-array to the left of the middle item. Otherwise, the item is

searched for in the sub-array to the right of the middle item. This process continues on the sub-

array as well until the size of the subarray reduces to zero.

How Binary Search Works?

For a binary search to work, it is mandatory for the target array to be sorted. We shall learn the

process of binary search with a pictorial example. The following is our sorted array and let us

assume that we need to search the location of value 31 using binary search.

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 12

Now we compare the value stored at location 4, with the value being searched, i.e. 31. We find

that the value at location 4 is 27, which is not a match. As the value is greater than 27 and we

have a sorted array, so we also know that the target value must be in the upper portion of the

array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31.

The value stored at location 7 is not a match, rather it is more than what we are looking for. So,

the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a match.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 13

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of comparisons to be made

to very less numbers.

Pseudocode

The pseudocode of binary search algorithms should look like this −

Procedure binary_search

 A ← sorted array

 n ← size of array

 x ← value to be searched

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

end procedure

Program:
#include<stdio.h>

void main()

{

 int a[100],n,i,j,k,temp,key,low,high,mid,flag=0,ch;

 printf("\n enter n value ");

 scanf("%d",&n);

 for (i = 0; i < n; i++)

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 14

 {

 printf("\n enter %d element",i+1);

 scanf("%d",&a[i]);

 }

 for(i = 0; i < (n -1); i++)

 {

 for (j=(i + 1); j < n; j++)

 {

 if (a[i] > a[j])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 printf("\n ELEMENTS AFTER SORTING \n");

 for (i = 0; i < n; i++)

 {

 printf(" %d",a[i]);

 }

ss: flag=0;

 printf("\n enter KEY element ");

 scanf("%d",&key);

 low=0;

 high=n-1;

 while(low<=high)

 {

 mid=(low+high)/2;

 if(a[mid]==key)

 {

 flag=1;

 break;

 }

 else if(key>a[mid])

 low=mid+1;

 else if(key<a[mid])

 high=mid-1;

 }

 if(flag==1)

 printf("\n %d is found in %d location",key,mid);

 else

 printf("\n KEY NOT FOUND");

 printf("\n DO U WANT TO CONTINUE 1.YES 2. NO");

 scanf("%d",&ch);

 if(ch==1)

 goto ss;

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 15

5.6 BASICS OF STRUCTURES

A Structure is a derived data type to organize a group of related data items of different data

types referring to a single entity. i.e., a single variable capable of holding data items of different

data types.

The data items in a structure are usually related like different kinds of information about

a person or about a part or about an account, etc.

Each data item in a structure is called a member, sometimes these members are also

called fields.

The keyword used to create a structure is struct.

The advantage of using a structure is that the accessibility of members becomes easier since all

the members of a specific structure gets allocation of continuous memory and therefore it

minimize the memory access time.

Structures can be declared and defined in many number of ways.

Generally a structure can be declared as:

struct tag_name {

 data_type1 var1;

 data_type2 var2;

 data_typen varn;

};

The declaration begins with the keyword struct. The list of declaration of its members must be

enclosed in braces, the tag_name is an identifier which specifies the new structure name.

The declaration of a structure does not reserve any storage space. But the definition of the

structure creates structure variables.

The structure variables can be defined as:

struct tag_name svar1, svar2 ...svarn;

Let us consider an example:

struct example {

 int a;

 float b;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 16

 char c;

};

struct example s1, s2, s3; // structure definition

In the above code example is a new user defined data type which consists of 3 variables of

different data types. The structure definition allocates a 7 bytes (2 + 4 + 1) memory to each

structure variable s1, s2, s3.

Another way of declaring and defining a structure is:

struct {

 data_type1 var1;

 data_type2 var2;

 data_typen varn;

}svar1, svar2;

In the above type of syntax variables are declared directly with the declaration of a

structure without choosing a name for the the structure and only two structure variables can

only be defined. So, It is not possible to create new variables of this structure type later in the

program.

Another syntax is:

struct tag_name {

 data_type1 var1;

 data_type2 var2;

 data_typen varn;

}svar1, svar2;

....

struct tag_name svar3, svar4;

Here, two structures variables are declared along with the structure tag, they can be used in the

program where they are declared. A new structure variables can also be defined by

using tag_name and used in the program.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 17

Processing of a structure refers to the ways of accessing the members of that structure.

Basically there are two operators available for accessing the members of a structure depending

on whether a normal variable or a pointer variable is declared to the structure.

They are:

1. Dot (period) operator

2. Arrow operator

To access a member of a structure using dot (.) operator, the syntax is:

structure_variable.member

Let us consider an example:

struct example {

 int a;

 float b;

 char c;

} ;

struct example e;

e.a = 25;

e.b = 45.67;

e.c = 'M';

In the above code e is a structure variable which has the memory of 3 variables a, b and c. Each

member can be accessed by using the operator dot (.) as e.a, e.b and e.c.

Let us consider another example:

struct employee {

 int empId;

 char empName[20];

} emp1;

emp1.empId = 201;

emp1.empName = "APJ.Abdul Kalam"; // Gives an error because a string can not be assigned

directly

strcpy(emp1.empName, "APJ.Abdul Kalam"); // Correct way of assigning a string to the array

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 18

A structure variable can be initialized in its definition itself with a list of initializers enclosed

within the braces. The initialization of values will be taken in an order.

Let us consider an example:

struct student {

 int roll_number;

 int total_marks;

 float attendance_percentage;

} ;

struct student s = {101, 450, 72.45};

In the above example 101 is assigned to s.roll_number, 450 is assigned

to s.total_marks and 72.45 is assigned to s.attendance_percentage.

The values of a one structure variable can be assigned to another structure variable of the same

structure type using the assignment operator.

In arrays we can not do assignment of one array variable to the another array variable of the

same type also. Below is an example of assigning one array variable to another array variable of

same type:

int a[5] = {10, 20, 30};

int b[5];

b = a; // Gives an error incompatible assignment of arrays

b[0] = a[0];

b[1] = a[1];

b[2] = a[2]; // This type of assignment is correct,i.e., array values can be assigned individually by

using index

Below is an example of assigning one structure variable to another structure variable of same

type:

struct book {

 char name[50];

 float price;

 int pages;

} ;

struct book b1 = {“C-Language”, 155.95, 375};

struct book b2;

b2 = b1; // This type of assignment is correct with respect to structure variables

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 19

In the above example the contents of a structure variable b1 are copied into another structure

variable b2 of same type.

Nested Structures:

There are two ways to define nested structures in C:

1. Define one structure variable within the declaration of another structure.

2. Declare one structure within the declaration of another structure.

Below is an example of defining one structure variable within another structure:

struct date {

 int date;

 int month;

 int year;

};

struct employee {

 char emp_name[30];

 float salary;

 struct date doj;

}e1;

struct student {

 char std_name[30];

 int regdno;

 struct date day;

}s1;

In the above example, date is one user defined data type which is declared outside of all

structures. The structure variables of date is defined with in two structures employee and student.

The structure variable e1 is defined for the type structure employee, which allocates the memory

to the each and every field including the structure variable doj of date.

e1.emp_name e1.salary e1.doj.date e1.doj.month e1.doj.year

2024 2054 2058 2060 2062

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 20

The structure variable s1 is defined for the type structure student, which allocates the memory to

the each and every field including the structure variable day of date.

s1.std_name s1.regdno s1.day.date s1.day.month s1.day.year

5024 5054 5056 5058 5060

When the structure date is declared in the global scope, the structure variables of date can be

defined any where in the program. We can access the member of nested structure as given

below:

Syntax:

 Outer_Structure.Nested_Structure.member

Examples:

 e1.doj.date

 s1.day.month

Another way to define a nested structure is to declare one structure within the declaration of

another structure.

Below is an example of declaring one structure within the declaration of another structure:

struct student {

 char std_name[30];

 int regdno;

 struct date {

 int date;

 int month;

 int year;

 }day;

}s1;

In the above example, date is one user defined data type which is declared inside the structure

student. So, the structure variables for date can not be defined outside of structure student.

The inner structure date can not be used outside of the outer structure student.

The structure variable s1 is defined for the type structure student, which allocates the memory to

the each and every field including the structure variable day of date.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 21

s1.std_name s1.regdno s1.day.date s1.day.month s1.day.year

5024 5054 5056 5058 5060

5.7 STRUCTURES AND FUNCTIONS

Like an ordinary variable, a structure variable can also be passed to a function. User may

either pass individual structure elements or the entire structure at once.

If a structure variable is passed by value, changes made to the structure variable inside the

function definition does not reflect in the originally passed structure variable.

If a structure variable is passed by address, changes made to the structure variable inside

function definition reflects in the originally passed structure variable.

If a programmer wants to pass a structure variable to the function, first the programmer has

to define the structure in the global section then only the function can access that structure

variable.

A pointer pointing to a structure is known as structure pointer. A pointer to the structure can be

defined with an asterisk (*) symbol.

Remember that on the left hand side of dot (.) operator there must always be a structure variable,

whereas on the left hand side of the arrow (->) operator there must be always a pointer to the

structure.

A pointer variable to the structure can hold the address of a structure variable or address of a

heap memory allocated at run-time for the structure type.

The heap memory for the structure type can also be created at the run-time using malloc() and

the address of that allocated memory can be assigned to a pointer to that structure.

The syntax of allocating memory for the structure using malloc() is:

ptr_variable_to_structure = (type_cast *) malloc(size_of_structure);

Below is an example of a pointer to the structure:

struct student {

 int rollno;

 float percentage;

};

struct student *p; // p is a pointer variable to the structure

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 22

p = (struct student *) malloc(sizeof(struct student)); // Assigning the address of a heap memory to

the pointer p

p->rollno = 22; // Assigning value 9 to the member rollno of the structure

p->percentage = 72.54; // Assigning value 72.54 to the member percentage of the structure

printf("%d %f", p->rollno, p->percentage);

User can create heap memory for array of structures at run-time by using malloc(), which can be

handled using a pointer variable of the structure.

Below is an example to create heap memory for array of structures:

struct student {

 int regdno;

 int maths_marks, c_marks, java_marks;

 int total;

 float avg;

};

p = (struct student *) malloc(3 * sizeof(struct student)); // Creates heap memory of 3 structure

variables

From the above declaration, &(p + i)->regdno returns the address of the ith student's regdno

which is referencing through the pointer p.

(p + i)->total gives the value of the ith student's total which is referencing through the pointer p.

5.8 ARRAYS OF STRUCTURES

When the programmer wants to define more number of structure variables, it is better practice to

define array of structures rather than individual structure variables.

Creation of array of structures is same as creation of integer arrays, float arrays and so on.

The syntax of defining an array of structure is:

struct tag_name structure_variable[size]; // The size specifies the number of structure variables to

be created

Below is an example of array of structure:

struct example {

 int a;

 float b;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 23

};

struct example e[3];

In the above example the definition of a structure will create an array of structures

with 3 structure variables of type structure example. An array of structure variables should get a

memory of continuous blocks and they can be accessed sequentially.

e[0].a e[0].b e[1].a e[1].b e[2].a e[2].b

4724 4726 4730 4732 4736 4738

5.9 POINTERS TO STRUCTURES

A pointer pointing to a structure is known as a structure pointer. If a pointer to the structure

variable is declared, then arrow (->) notation is used to access the members of the structure.

Remember that on the left hand side of dot operator there must always be a structure variable,

whereas on the left hand side of the arrow operator there must always be a pointer to a

structure.

To access a member of a structure using arrow (->) operator, the syntax is:

structure_pointer_variable -> member

Let us consider an example:

struct student {

 int roll_number;

 int total_marks;

 float attendance_percentage;

} ;

struct student s = {201, 350, 92.75};

struct student *p;

p = &s;

printf("%d %d %f\n", p->roll_number, p->total_marks, p->attendance_percentage);

In the above example p is a pointer to the structure student, so it can store the address of a

structure variable of same type.

Here, p->roll_number refers the value of s.roll_number, p->total_marks refers the value of

s.total_marks and p->attendance_percentage refers the value of s.attendance_percentage.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 24

5.10 SELF-REFERENTIAL STRUCTURES

Let us consider the below code:

struct student {

 int rollno;

 float percentage;

 struct student s; // It gives an error

} ;

struct student s1;

In the above code without completing the declaration of a structure, a structure variable has been

defined, which does not allocate any memory and it gives an error message because the structure

student is not declared yet.

But we can define a pointer to the structure with in the declaration of the same structure because

a pointer can allocate 2 bytes of memory without depending on the type.

It is sometimes desirable to include one member that is pointer to the parent structure type

within a structure.

A structure is called as self referential structure if it contains a pointer to itself. A self-

referential structure is one of the data structures which refer to the pointer to point to another

structure of the same type.

The general syntax of a self referential structure can be given as:

struct tag_name {

 datatype1 var1;

 datatype2 var2;

 struct tag_name *p;

};

In the above example the pointer variable p is referring to its parent structure. So, the structure of

the type tag_name will contain a member that points to another structure of same

type tag_name.

The major application areas of this kind of structures includes construction of non-linear data

structures such as trees, graphs and linear data structures such as linked lists, stacks, queues.

5.12 TYPEDEF

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 25

typedef is a C keyword implemented to tell the compiler for assigning an alternative name to C's

already exist data types. This keyword, typedef typically employed in association with user-

defined data types in cases if the names of datatypes turn out to be a little complicated or

intricate for a programmer to get or to use within programs. The typical format for implementing

this typedef keyword is:

Syntax:

typedef <existing_names_of_datatype> <alias__userGiven_name>;

A structure can also be declared by using the keyword typedef as:

typedef struct tag_name {

 data_type1 var1;

 data_type2 var2;

 data_typen varn;

}new_name;

new_name svar1, svar2, ..., svarn;

Here, typedef is used to create an alias name new_name for the user defined structure struct

tag_name, so new_name can be used to define structure variables of the given type.

5.13 UNIONS

A union is also a collection of different data types in C but that allows to store different data

types in the same memory location.

User can define a union with many members, but only one member can contain a value at any

given time.

Unions provide an efficient way of using the same memory location for multiple-purpose.

A union is same as structures but the difference is that only one member can be accessed at a

time because the memory is created only for one member which has the highest number of

bytes in size.

A union is declared by using the keyword union and members of the union can be accessed by

using dot (.) operator.

The declaration and definition of the union is:

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 26

union tag_name {

 data_type1 var1;

 data_type2 var2;

 data_typen varn;

};

union tag_name uvar1, uvar2,....uvarn;

Below code is an example for union:

union example {

 int number;

 float price;

 char ch;

};

union example e;

In the above example 4 bytes of memory is allocated to the union variable e, the members can be

accessed as e.number, e.price, e.ch butt only one member can be accessed at a time because the

same memory is used for all the 3 members.

1

byte

1

byte

1

byte

1

byte

A Structure is a derived data type to organize a group of related data items of different data

types referring to a single entity. i.e., a single variable capable of holding data items of different

data types.

A Union is also a collection of different data types but only one member can be accessed at a

time.

5.14 BIT-FIELDS

In C, the user can specify the size in bits for the members of a structure and a union.

The idea behind usage of bits is to use memory efficiently when the value of a field does not

exceed a limit of storing the bits.

Bit fields can be used to reduce memory consumption when a program requires a number of

integer variables which will always consists of low values.

For example, consider the following example:

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 27

struct date {

 int day;

 int month;

 int year;

};

void main() {

 struct date d = {31, 12, 2001};

 printf("Given date is: %d/%d/%d\n", d.day, d.month, d.year);

}

The size of the above structure is 12 bytes (in 32-bit processor) because each int type occupies 4

bytes of memory.

Here, the value of day is always from 1 to 31 and the value of month is from 1 to 12. hence, the

space can be optimized by using bit fields..

The field day will take maximum of 5 bits to store the value between 1 and 31, as well as month

will take maximum of 4 bits to store the value between 1 and 12. So, represent them in the bits

and not in bytes.

The declaration of a bit field in the structure is as follows:

struct tag_name {

 data_type member_name : width_in_bits;

 // width_in_bits specifies the number of bits in the bit-field. The width must be less than

or equal to the bit width of the specified type

};

The above example can be written as:

struct date {

 unsigned int day : 5; // These are unsigned because day, month, year are not specified

in negative'sunsigned int month : 4;

 unsigned int year;

};

void main() {

 struct date d = {31, 12, 2001};

 printf("Given date is: %d/%d/%d\n", d.day, d.month, d.year);

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 28

The size of the above structure is 8 bytes because day and month are represented in bits and the

field year can take 4 bytes of memory.

Within 4 bytes slot , day and month are allocated 5 bits, 4 bits and the remaining bits are free.

Hence,the user can use up to a total of 32 bits.

5.15 VARIABLE-LENGTH ARGUMENT LISTS

Sometimes, you may come across a situation, when you want to have a function, which can take

variable number of arguments, i.e., parameters, instead of predefined number of parameters. The

C/C++ programming language provides a solution for this situation and you are allowed to

define a function which can accept variable number of parameters based on your requirement.

The following example shows the definition of such a function.

int func(int, ...) {

 .

 .

 .

}

int main() {

 func(1, 2, 3);

 func(1, 2, 3, 4);

}

It should be noted that the function func() has its last argument as ellipses, i.e. three dotes (...)

and the one just before the ellipses is always an int which will represent the total number

variable arguments passed. To use such functionality, you need to make use of stdarg.h header

file which provides the functions and macros to implement the functionality of variable

arguments and follow the given steps −

 Define a function with its last parameter as ellipses and the one just before the ellipses is

always an int which will represent the number of arguments.

 Create a va_list type variable in the function definition. This type is defined in stdarg.h

header file.

 Use int parameter and va_start macro to initialize the va_list variable to an argument

list. The macro va_start is defined in stdarg.h header file.

 Use va_arg macro and va_list variable to access each item in argument list.

 Use a macro va_end to clean up the memory assigned to va_list variable.

Now let us follow the above steps and write down a simple function which can take the variable

number of parameters and return their average −

Example

#include <stdio.h>

#include <stdarg.h>

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 29

double average(int num,...) {

 va_list valist;

 double sum = 0.0;

 int i;

 va_start(valist, num); //initialize valist for num number of

arguments

 for (i = 0; i < num; i++) {

 //access all the arguments assigned to valist

 sum += va_arg(valist, int);

 }

 va_end(valist); //clean memory reserved for valist

 return sum/num;

}

int main() {

 printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));

 printf("Average of 5, 10, 15 = %f", average(3, 5,10,15));

}

Output

Average of 2, 3, 4, 5 = 3.500000

Average of 5, 10, 15 = 10.000000

5.15 FORMATTED INPUT-SCANF

Formatted Input and Output allows programmers to perform input and output in a particular

fashion.

Formatting integer input

%wd

Here %d is the conversion specification for integer and w denotes the maximum width of the

input data. If the length of the input is more than the width then values are not stored correctly.

Let’s take some examples:

scanf("%2d%3d", &a, &b);

In this case variable, a has a width of 2 and b has a width of 3.

The values of a and b can be entered in the following ways:

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 30

Case 1: When the length of the data entered is less than the field width, then the input values are

stored correctly in the given variables.

Input: 4 34

In this case, 4 is stored in a and 34 is stored in b.

Case 2: When the length of the data entered is equal to the field width, then the input values are

stored correctly in the given variables.

Input: 23 456

In this case, 23 is stored in a and 456 is stored in b.

Case 3: When the length of the data entered is greater than the field width, then input values are

not stored correctly in the given variables.

Input: 234 99

Since a has a width of 2, only 23 is stored in a and 4 is stored in b, while the rest of the input is

ignored.

Formatting integer output

%wd

In this case, the w denotes the minimum width of the data and d is for integers. If the length of

the variable is less than the width then the value is printed right-justified with leading spaces. For

e.g:

Case 1: When the length of the variable is less than the specified width.

printf("a=%2d,b=%3d", a, b);

If a = 4 and b = 23, then the output will be:

Expected Output:

 a=•4,b=•23

In this case, width specified for the first variable is 2 and the length of the output is only 1

digit(since the number is 4), as a result, one leading space is added before 4. The space character

is represented using a • character. Similarly, the width of the second variable is 3 while the

length of the output is only 2 digit (since the number is 23), so once again a leading space is

added before 23.

Case 2: When the length of the variable is equal to the width specified no leading space is added.

printf("a=%3d,b=%4d", a, b);

If a = 456 and b = 2234, then

Expected Output:

 a=456,b=2234

Case 3: When the length of the variable is more than the width specified then the output is

printed correctly despite the length of the variable.

printf("a=%2d,b=%3d", a, b);

If a = 1221 and b = 19234, then

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 31

Expected Output:

a=1221,b=19234

Formatting Floating Point Input

%wf

Here w is an integer number specifying the maximum width of the input data including digits

before and after decimal points and the decimal itself.

Case 1: When the length of the input data is less than the given width, then the values are stored

correctly in the given variables.

scanf("%3f%4f", &a, &b);

Input: 4 1.2

In this case the maximum width of the first variable is 3, while the length of the input is 1,

similarly, the width of the second variable is 4, while the length of the input is 3. So the values

are stored correctly in the variables. i.e a = 4 and b = 1.2.

Case 2: When the length of input data is equal to the width, then the values are stored correctly

in the variables.

scanf("%3f%4f", &a, &b);

Input: 1.2 33.1

In this case, the width and length of the input are same, so the values are stored correctly in the

variables. i.e a = 1.2 and b = 33.1.

Case 3: When the length of input data is greater than the width specified then the values are not

stored correctly in the variables.

1 scanf("%3f%4f", &a, &b);

Input: 5.21 983.71

As the width of the first variable is 3 only 5.2 is stored in the variable a while 1 is stored in b,

and the rest of the input is ignored.

Formatting Floating Point Output

%w.nf

The w is the minimum width of output data and n is the digits to be printed after the decimal

point. Note that width includes digits before and after the decimal point and the decimal itself.

Case 1: When the length of the output data is less than width specified, then the numbers are

right justified with the leading spaces.

printf("a=%5.1f, b=%5.2f", a, b);

where a = 3.1 and b = 2.4

Expected Output:

 a=••3.1, b=•2.40

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 32

In this case width of the variable, a is 5 and length of output data is 3, that’s why two leading

spaces are added before 3.1 . Similarly, the width of the variable b is 5 and length of output data

is 3 , but since the number of digits to be printed after the decimal point is 2 only one leading

space is added before 2.4.

Case 2: When the length of data is equal to the width specified, then the numbers are printed

without any leading spaces.

printf("a=%4.2f, b=%4.2f", a, b);

where a = 32.1 and b = 45.11.

Expected Output:

 a=32.10, b=45.11

Case 3: When the length of data is greater than the width specified, then the numbers are printed

without any leading spaces.

printf("a=%5.2f, b=%4.3f", a, b);

where a = 34189.313 and b = 415.1411.

Expected Output:

 a=34189.31, b=415.141

Formatting String Input

%ws

Here w specify the length of the input to be stored in the variable.

char str[20];

scanf("%4s", str)

Note: Strings in C is declared as an array of characters, we will learn more about arrays and string

in lesson String Basics in C.

If the input is earning then only earn will be stored in the variable str.

Formatting String Output

%w.ns

The w is the width of the string. The dot (.) character after w and n are optional. If present

only n characters will be displayed and (w-n) leading spaces will be added before the string. On

the other hand, if only width of the string(i.e w) is specified and the length of the string is less than

the width specified then the output will be right-justified with leading spaces. Otherwise, no

leading space is added.

Case 1:

printf("%4s", "codeindepth");

Expected Output:

codeindepth

Here width of the string is less than the length of the input, so the string will be printed with no

leading spaces.

https://overiq.com/c-programming-101/string-basics-in-c/

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 33

Case 2:

printf("%10s", "code");

Expected Output:

•••••••code

Here width of the string is 10 and the length of the string is 4, so the string will be printed with 6

leading spaces.

Case 3:

1 printf("%10.3s", "code");

Expected Output:

1 •••••••cod

Here width of the output is 10 but .3 indicates that only 3 characters will be displayed. The length

of the string is 4, so only "cod" will be displayed along with 7 (10-3=7) leading spaces.

Case 4:

1 printf("%.6s", "codeindepth");

Expected Output:

1 codein

Here width of the input is not specified but .6 indicates that whatever be the length of input string

only the first 6 character from the string will be displayed.

5.16 FILE ACCESS

There are four basic file operations:

1. Opening a file

2. Reading data from a file

3. Writing data to a file

4. Closing a file

A file has to be opened before performing read and write operations. On opening a file,the

operating system provides a handle to perform various file operations using different functions.

A request made to the operating system for opening a file can either succeed or fail. If the

request succeeds, the operating system returns a file descriptor which is a pointer to the

structure FILE. If the request fails, a NULL is returned.

https://en.wikipedia.org/wiki/File_descriptor

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 34

A file can be opened by using fopen(). This function returns the file descriptor, as FILE pointer.

The declaration of fopen() as available in stdio.h is:

FILE *fopen(char *filename, char *mode);

Where filename is a sequence of characters that make up a valid filename on the given operating

system.

Note: The filename can also include the complete path of the file.

The parameter mode determines the way in which the opened file will be used (i.e, for reading,

writing or appending, etc.)

The mode parameter also allows us to read or write data either in text or binary format.

Different modes for text files are:

Mode Description

r Opens a text file only for reading

w Opens a text file only for writing

a Opens a text file for appending

r+ Opens a text file for reading and writing

w+ Opens a text file for reading and writing

a+ Append a text file for read/write

Different modes for binary files are:

Mode Description

rb Opens a binary file only for reading

wb Opens a binary file only for writing

ab Opens a binary file for appending

rb+ Opens a binary file for reading and writing

wb+ Opens a binary file for reading and writing

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 35

ab+ Append a binary file for read/write

The data structure of a file descriptor is defined as FILE in the standard library stdio.h. Hence,

all files are declared as type FILE before they are used.

Consider an example:

FILE *fp; // fp is a FILE pointer variable that represents the file descriptor

fp = fopen("sample.txt", "r"); // fopen() function opens a file "sample.txt" in read mode

Note the difference in the fopen() operation in the different modes:

 When the mode is write only, a file with a specified name is created if the file does not

exist and the contents are deleted if the file already exists.

 When the mode is read only, the file is opened with the current contents, if the file

already exists, else an error occurs.

 When the mode is append, the file is opened with the current contents if the file exist,

else a new file with the give name and path is created.

 The file that is opened by using fopen() should be closed after the work is over on that

file. A file close will flush out all the entries from buffer.

Files are closed with the function fclose(). By closing a file after operations performed on

that file will save all the modifications done on the file.

The general syntax of fclose() is:

 int fclose(FILE *fp);

 The fclose() function closes the file that is being pointed by file pointer fp.

An important point regarding fclose() is closing a file will prevent misuse of the FILE.

If an error occur in closing a file then fclose() returns EOF (End Of File). For successful

close operation it returns 0.

Let us consider an example:

 FILE *fp;

 fp = fopen("sample.txt", "r");

 // perform operations on file

 fclose(fp); // disassociate the file with the stream

 The functions getc() and fgetc() are used to read a character from the file which is

opened for reading purpose. Both functions have same syntax and their working is also

same.

The general syntax of getc() is:

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 36

 int getc(FILE *fp);

 The getc() function returns the ASCII equivalent of the character that is being read. If

an error occurs in reading,then it returns EOF.

Consider the following example:

 FILE *fp;

 fp = fopen("sample.txt", "r");

 ch= getc(fp);

 Here, a single character is read from the file with logical name fp. That character is

assigned to character variable ch.

The functions putc() and fputc() are used to write a character into a file which is opened

for writing.

The general syntax of putc() is:

 int putc(int c, FILE *fp);

 If an error occurs, it returns EOF.

Consider the following example:

 putc(ch, fp);

 Here, the statement will write the character specified by ch into the file pointed by fp.

5.17 ERROR HANDLING-STDERR AND EXIT

It is possible that an error may occur while performing input or output operations on a file. The

typical situations includes:

 Trying to read beyond the end of the file mark

 Device overflow

 Trying to use a file that has not been opened for that purpose

 Trying to perform an operation on a file when it is opened for another type

 Opening a file with an invalid filename

 Attempting to write onto a write protected file

If the user fails to check for such read and write errors, program may terminate abnormally

For this reason C language provides some library functions to detect errors If any, while

read/write operations are carried out.

Some such functions are as given below:

1.feof(): The feof() function can be used to check the end of file condition.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 37

It takes a file pointer as its argument and returns non-zero if the file pointer is at the end of file,

Else it returns zero.

For example,Consider the program given below:

if (feof(fp)) {

 printf("End of data\n");

}

2.ferror(): The ferror() function is used to detect errors that might occur

during read/write operation on a file. It returns a zero when the attempt is successful and non-

zero in case of failure.

Consider the following example:

if (ferror(fp)) {

 printf("Error occurred during read/write\n");

}

3.perror(): The perror() is a standard library function which prints the error message specified

by the compiler. To print the error message user can use perror() instead of printf().

Consider the following example:

if (ferror(fp)) {

 perror("Error occurred during read/write\n");

}

5.18 LINE INPUT AND OUTPUT

The fgets function reads a sequence of character, i. e., a character string from an input stream. Its

prototype is given below.

char *fgets(char *s , int n, FILE*fp);

The characters from the input stream are read into a character arrays until a newline character is

read, n - 1 characters are read or the end-of-file is reached. If a newline character is read, it is

retained in the character array. The function then adds a terminating null character to strings and

returns it. However, the function returns a NULL value if an end-of-file is encountered before

any character is read or an error occurs during input.

The fputs function writes a character string to an output stream. Its format is given below.

int fputs (const char *s , FILE *.fp) ;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 38

All the characters in strings except the null terminator are written to stream fp. The function

returns the numbers of characters written to the stream or EOF if an error occurs during output.

These functions are similar to putchar () and getchar () which we have already used for standard

input/output. The functions may also be used for standard input/output by changing the file

stream. The header file <stdio.h> should be included in the program which uses these functions.

A program to display a specified text file using the fgets and fputs functions is given below.

#include <stdio.h>

#include <stdlib.h>

void main()

{

 //Header fileincluded for function exit()

 FILE* Fptr;

 char ch;

 Fptr = fopen("Myfile","w");

 clrscr();

 if(Fptr ==NULL)

 //open myfilefor writing.

 // If return value is NULL exit

 {

 printf("File could not be opened.");

 exit (1);

 }

 else

 {

 printf("File is open. Enter the text.\n");

 while ((ch= getchar()) != EOF) /*get characters from keyboard*

 fputc(ch, Fptr); //one by one and write it to file.

 fclose(Fptr);

 } //this code closes the file

 Fptr = fopen("Myfile","r"); // open file for reading

 if(Fptr ==NULL) // if return value is NULL, exit.

 {

 printf("File could not be opened");

 exit(1);

 }

 else

 {

 printf("File is opened again for reading.\n");

 while ((ch= fgetc(Fptr)) != EOF) // get characters from file

 printf("%c",ch);

 fclose(Fptr);

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 39

 } // till EOF and display it.

} // This line closes the file.

The expected output is as given below. The EOF is included by pressing Ctrl and Z. It is

indicated by ^Z in the third line of output.

5.19 MISCELLANEOUS FUNCTIONS.

Descriptions and example programs for C environment functions such as getenv(), setenv(),

putenv() and other functions perror(), random() and delay() are given below.

Miscellaneous functions Description

getenv(): This function gets the current value of the environment variable

setenv():This function sets the value for environment variable

putenv():This function modifies the value for environment variable

perror():Displays most recent error that happened during library function

callrand():Returns random integer number range from 0 to at least 32767

delay(): Suspends the execution of the program for particular t

	How Selection Sort Works?
	Algorithm

	How Insertion Sort Works?
	Algorithm

	How Binary Search Works?
	Pseudocode
	Example
	Output
	Formatting integer input
	Formatting integer output
	Formatting Floating Point Input
	Formatting Floating Point Output

