
Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 1

UNIT – III

Types, Operators, and Expressions: Variable names, data types and sizes, constants,
declarations, arithmetic operators, relational and logical operators, type conversions,
increment and decrement operators, bitwise operators, assignment operators and
expressions, conditional expressions precedence and order of evaluation.

Input and output: standard input and output, formatted output-Printf, formatted input-
Scanf.

Control Flow: Statements and blocks, if-else, else-if, switch, Loops-while and for, Loops-
Dowhile, break and continue, Goto and labels.

Functions and Program Structure: Basics of functions, functions returning non-integers,
external variables, scope variables, header variables, register variables, block structure,
initialization, recursion, the C processor.

3.1 VARIABLE NAMES

Each and every language in the world requires alphabets to form words. Likewise, a
programming language also needs a set of characters to write a program.

The set of characters used in a language is known as its Character Set.

Every language makes use of its own character set to form words or symbols that make up
the vocabulary of the language.

C language is case sensitive. By case sensitive, we mean that the C compiler treats lowercase and
uppercase characters differently. For example, the variable name num1 is different from Num1.

C language has its own character set. The character set for ANSI Standard C (ANSI C) is as
follows:

Uppercase alphabets: A to Z

Lowercase alphabets: a to z

Decimal digits: 0 to 9

Special characters: + - * / % = < > : ; , .’ “ ?! # \ () { } _ [] & | ^ ~
Escape sequences: \b \t \v \r \f \n \\ \' \"\? \0 \a

A variable is a name given to a memory location to store some value. Since the memory location
can store different values during execution of a program, the name used to refer to it, is called

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 2

a variable.
Since variables are a part of identifiers, they follow the same naming conventions.
Like identifiers, a valid variable name can start with an alphabet or an underscore (_) and later
have a combination of one or more letters, digits and underscores.

A few examples of valid variable names are : sum,total,average_marks, etc.

When creating a variable, we should mention the type of data (for example, integer or character)
that it would store. This is called the data type of that variable.

In a C program, variables should be declared before their usage.

The format for declaring a variable is data_type variable_name;.

For example:

int count; // int is the data type and count is the variable name

The above declaration can also be combined with initialisation. In such a case, the format
for declaring a variable is data_type variable_name = constant_value;.

There are certain predefined words as part of C programming language that have a special
meaning and purpose. They are called reserved words or keywords.

The user (programmer) cannot redefine these keywords, i.e.,the user cannot change their
spellings or add new ones to the C programming language.

All reserved words in C are formed using only the lowercase letters.

Keywords have special meaning and purpose, so they cannot be used as variable names.

C language has 32 reserved words as per ANSI standards. They are as given below:

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 3

3.2 DATA TYPES AND SIZES

Data types specify how we enter data into our programs and what type of data we enter. C
language has some predefined set of data types to handle various kinds of data that we can use in
our program. These datatypes have different storage capacities.

C language supports 2 different type of data types:

1. Primary data types: These are fundamental data types in C namely integer(int), floating
point(float), character(char) and void.

2. Derived data types: Derived data types are nothing but primary datatypes but a little
twisted or grouped together like array, stucture, union and pointer. These are discussed in
details later.

Data type determines the type of data a variable will hold. If a variable x is declared as int. it
means x can hold only integer values. Every variable which is used in the program must be
declared as what data-type it is.

Integer type : Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed
short int

1 -128 to 127

unsigned short int 1 0 to 255

long int or signed
long int

4 -2,147,483,648 to
2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating point type

Floating types are used to store real numbers.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 4

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

Character type

Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

void type

void type means no value. This is usually used to specify the type of functions which returns
nothing. We will get acquainted to this datatype as we start learning more advanced topics in C
language, like functions, pointers etc.

3.3 CONSTANTS :

Constants refer to fixed values that the program may not alter during its execution. These fixed
values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a
character constant, or a string literal. There are enumeration constants as well.

Constants are treated just like regular variables except that their values cannot be modified after
their definition.

Integer Literals

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 5

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base
or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

Following are other examples of various types of integer literals −

85 /* decimal */
0213 /* octal */
0x4b /* hexadecimal */
30 /* int */
30u /* unsigned int */
30l /* long */
30ul /* unsigned long */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent
part. You can represent floating point literals either in decimal form or exponential form.

While representing decimal form, you must include the decimal point, the exponent, or both;
and while representing exponential form, you must include the integer part, the fractional part,
or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals −

3.14159 /* Legal */
314159E-5L /* Legal */
510E /* Illegal: incomplete exponent */
210f /* Illegal: no decimal or exponent */
.e55 /* Illegal: missing integer or fraction */

Character Constants

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a simple variable
of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a
universal character (e.g., '\u02C0').

There are certain characters in C that represent special meaning when preceded by a backslash
for example, newline (\n) or tab (\t).

Defining Constants

There are two simple ways in C to define constants −

 Using #define preprocessor.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 6

 Using const keyword.

The #define Preprocessor

Given below is the form to use #define preprocessor to define a constant −

#define identifier value

example

#include <stdio.h>

#define LENGTH 10
#define WIDTH 5

The const Keyword

You can use const prefix to declare constants with a specific type as follows −

const type variable = value;

The following example explains it in detail

#include <stdio.h>

int main() {
 const int LENGTH = 10;
 const int WIDTH = 5;
 const char NEWLINE = '\n';
 int area;

 area = LENGTH * WIDTH;
 printf("value of area : %d", area);
 printf("%c", NEWLINE);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of area : 50

3.4 DECLARATIONS

In C programming, variables which are to be used later in different parts of the functions have to
be declared. Variable declaration tells the compiler two things:

 The name of the variable
 The type of data the variable will hold
There are two ways of declaring variable in C programming.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 7

1. Primary Type Declaration
2. User Defined Type Declaration

Primary Type Declaration
A variable can store any data type in C programming. The name of the variable has nothing to do
with its type. The general syntax of declaring a variable primarily is

data_type var1,var2,...varn;

Here, var1, var2,...varn are the names of valid variables.
Variables can also be defined in multiple lines instead of on the same line.

data_type var1;

data_type var2;

data_type varn;

When the variables are declared in single line, then the variables must be separated by commas.

Note: All declaration statements must end with a semi-colon(;).

For example:

int age;

float weight;

char gender;

In these examples, age, weight and gender are variables which are declared as integer data type,
floating data type and character data type respectively.

User-Defined Type Declaration
In C programming, a feature known as "type definition" is available which allows a programmer
to define an identifier that represents an existing data type. The user defined identifier can be
used later in the program to declare variables. The general syntax of declaring a variable by user-
defined type declaration is:

typedef type identifier;

Note: typedef cannot create a new type
Consider an example:
typedef int age;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 8

typedef float weight;

Here, age represents int and weight represent float which can be used later in the program to
declare variables as follows:
age boy1,boy2;

weight b1,b2;

Here, boy1 and boy2 are declared as as integer data type and b1 & b2 are declared as floating
integer data type.
The main advantage of using user-defined type declaration is that we can create meaningful data
type names for increasing the readability of a program.

Another user-defined data type is enumerated data type. The general syntax of enumerated data
type is:

enum identifier {value 1,value 2,...value n};

Here, identifier is a user-defined enumerated data type which can be used to declare variables
that can have one of the values enclosed within the braces. The values inside the braces are
known as enumeration constants. After this declaration, we can declare variables to be of this
'new' type as:
enum identifier v1, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ... valuen.
The following kinds of declarations are valid:

v1=value5;

v3=value1;

User-defined Type Declaration Example

enum mnth {January, February, ..., December};

enum mnth day_st, day_end;

day_st = January;

day_end = December;

if (day_st == February)

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 9

day_end = November;

The compiler automatically assigns integer digits begriming with 0 to all the enumeration
constants. That is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on.
However, the automatic assignments can be overridden by assigning values explicitly to thee
enumeration constants.
For example:

enum mnth {January = 1, February, ..., December};

Here, the constant January is assigned value 1. The remaining values are assigned values that
increase successively by 1.
The definition and declaration of enumerated variables can be combined in one statement. For
example;

enum mnth {January, ... December} day_st, day_end;

3.5 ARITHMETIC OPERATORS

The following table shows all the arithmetic operators supported by the C language. Assume
variable A holds 10 and variable B holds 20, then −

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an
integer division.

B % A = 0

++ Increment operator increases the integer value by
one.

A++ = 11

-- Decrement operator decreases the integer value by
one.

A-- = 9

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 10

3.6RELATIONAL AND LOGICAL OPERATORS

The following table shows all the relational operators supported by C. Assume variable A holds
10 and variable B holds 20 then −

Show Examples

Operator Description Example

== Checks if the values of two operands are equal or not. If yes, then
the condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal or not. If the
values are not equal, then the condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than the value of
right operand. If yes, then the condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the value of right
operand. If yes, then the condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal to the
value of right operand. If yes, then the condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or equal to the
value of right operand. If yes, then the condition becomes true.

(A <= B) is true.

Logical Operators

Following table shows all the logical operators supported by C language. Assume
variable A holds 1 and variable B holds 0, then −

Operator Description Example

&& Called Logical AND operator. If both the operands are non-zero, then the
condition becomes true.

(A && B) is
false.

|| Called Logical OR Operator. If any of the two operands is non-zero, then the
condition becomes true.

(A || B) is true.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 11

! Called Logical NOT Operator. It is used to reverse the logical state of its
operand. If a condition is true, then Logical NOT operator will make it false.

!(A && B) is
true.

3.7 TYPE CONVERSIONS

Converting one datatype into another is known as type casting or, type-conversion. For
example, if you want to store a 'long' value into a simple integer then you can type cast 'long' to
'int'. You can convert the values from one type to another explicitly using the cast operator as
follows −

(type_name) expression

Consider the following example where the cast operator causes the division of one integer
variable by another to be performed as a floating-point operation −

#include <stdio.h>

main() {

 int sum = 17, count = 5;
 double mean;

 mean = (double) sum / count;
 printf("Value of mean : %f\n", mean);
}

When the above code is compiled and executed, it produces the following result −

Value of mean : 3.400000

It should be noted here that the cast operator has precedence over division, so the value
of sum is first converted to type double and finally it gets divided by count yielding a double
value.

Type conversions can be implicit which is performed by the compiler automatically, or it can be
specified explicitly through the use of the cast operator. It is considered good programming
practice to use the cast operator whenever type conversions are necessary.

3.8 INCREMENT AND DECREMENT OPERATORS

Increment Operators are used to increased the value of the variable by one and Decrement
Operators are used to decrease the value of the variable by one in C programs.

Both increment and decrement operator are used on a single operand or variable, so it is called
as a unary operator. Unary operators are having higher priority than the other operators it
means unary operators are executed before other operators.

Syntax

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 12

 ++ // increment operator

 -- // decrement operator

Note: Increment and decrement operators are can not apply on constant.
Example

x= 4++; // gives error, because 4 is constant

Type of Increment Operator

 pre-increment
 post-increment

pre-increment (++ variable)

In pre-increment first increment the value of variable and then used inside the expression
(initialize into another variable).

Syntax

++ variable;

Example pre-increment

#include<stdio.h>
#include<conio.h>

void main()
{
int x,i;
i=10;
x=++i;
printf("x: %d",x);
printf("i: %d",i);
getch();
}

Output

x: 11

i: 11

In above program first increase the value of i and then used value of i into expression.

post-increment (variable ++)

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 13

In post-increment first value of variable is used in the expression (initialize into another
variable) and then increment the value of variable.

Syntax

variable ++;

Example post-increment

#include<stdio.h>
#include<conio.h>

void main()
{
int x,i;
i=10;
x=i++;
printf("x: %d",x);
printf("i: %d",i);
getch();
}

Output

x: 10

i: 11

In above program first used the value of i into expression then increase value of i by 1.

Type of Decrement Operator

 pre-decrement
 post-decrement

Pre-decrement (-- variable)

In pre-decrement first decrement the value of variable and then used inside the expression
(initialize into another variable).

Syntax

-- variable;

Example pre-decrement

#include<stdio.h>
#include<conio.h>

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 14

void main()
{
int x,i;
i=10;
x=--i;
printf("x: %d",x);
printf("i: %d",i);
getch();
}

Output

x: 9

i: 9

In above program first decrease the value of i and then value of i used in expression.

post-decrement (variable --)

In Post-decrement first value of variable is used in the expression (initialize into another
variable) and then decrement the value of variable.

Syntax

variable --;

Example post-decrement

#include<stdio.h>
#include<conio.h>

void main()
{
int x,i;
i=10;
x=i--;
printf("x: %d",x);
printf("i: %d",i);
getch();
}

Output

x: 10

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 15

i: 9

In above program first used the value of x in expression then decrease value of i by 1.

3.9 BITWISE OPERATORS

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^
is as follows –

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60 and
variable 'B' holds 13, then −

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both
operands.

(A & B) =
12, i.e., 0000
1100

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 16

| Binary OR Operator copies a bit if it exists in either operand. (A | B) = 61,
i.e., 0011
1101

^ Binary XOR Operator copies the bit if it is set in one operand but not
both.

(A ^ B) = 49,
i.e., 0011
0001

~
Binary One's Complement Operator is unary and has the effect of
'flipping' bits.

(~A) =
~(60), i.e,. -
0111101

<< Binary Left Shift Operator. The left operands value is moved left by the
number of bits specified by the right operand.

A << 2 = 240
i.e., 1111
0000

>> Binary Right Shift Operator. The left operands value is moved right by
the number of bits specified by the right operand.

A >> 2 = 15
i.e., 0000
1111

3.10 ASSIGNMENT OPERATORS AND EXPRESSIONS

Assignment Operators

The following table lists the assignment operators supported by the C language −

Show Examples

Operator Description Example

= Simple assignment operator. Assigns values from right side operands to
left side operand

C = A + B will
assign the value
of A + B to C

+= Add AND assignment operator. It adds the right operand to the left
operand and assign the result to the left operand.

C += A is
equivalent to C =
C + A

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 17

-= Subtract AND assignment operator. It subtracts the right operand from
the left operand and assigns the result to the left operand.

C -= A is
equivalent to C =
C - A

*= Multiply AND assignment operator. It multiplies the right operand with
the left operand and assigns the result to the left operand.

C *= A is
equivalent to C =
C * A

/= Divide AND assignment operator. It divides the left operand with the
right operand and assigns the result to the left operand.

C /= A is
equivalent to C =
C / A

%= Modulus AND assignment operator. It takes modulus using two
operands and assigns the result to the left operand.

C %= A is
equivalent to C =
C % A

<<= Left shift AND assignment operator. C <<= 2 is same
as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same
as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same
as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as
C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as
C = C | 2

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 18

3.11 CONDITIONAL EXPRESSIONS

C programming conditional operator is also known as a ternary operator. It takes three
operands. Conditional operator is closely related with if..else statement.

Syntax of C programming conditional operator

(condition) ? expression1 : expression2

If the condition is true then expression1 is executed else expression2 is executed.

#include <stdio.h>

int main()
{
 int x=1, y ;
 y = (x ==1 ? 2 : 0) ;
 printf("x value is %d\n", x);
 printf("y value is %d", y);
}
Output: x value is 1
 y value is 2

3.12 PRECEDENCE AND ORDER OF EVALUATION

Operator precedence determines the grouping of terms in an expression and decides how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has a higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 19

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^=
|=

Right to left

Comma , Left to right

Example

#include <stdio.h>

main() {

 int a = 20;
 int b = 10;
 int c = 15;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 20

 int d = 5;
 int e;
 e = (a + b) * c / d; // (30 * 15) / 5
 printf("Value of (a + b) * c / d is : %d\n", e);

 e = ((a + b) * c) / d; // (30 * 15) / 5
 printf("Value of ((a + b) * c) / d is : %d\n" , e);

 e = (a + b) * (c / d); // (30) * (15/5)
 printf("Value of (a + b) * (c / d) is : %d\n", e);

 e = a + (b * c) / d; // 20 + (150/5)
 printf("Value of a + (b * c) / d is : %d\n" , e);

 return 0;
}

INPUT AND OUTPUT

3.13 STANDARD INPUT AND OUTPUT

C provides three different types of functions in the stdio.h header file for reading and writing
data as given below:

Different Types of Functions Function for Reading Function for Printing

Character Oriented I/O Functions
Used to read/write a single character at a time

getchar() putchar()

Formatted I/O Functions
Used to read/write a data of different formats

scanf() printf()

String I/O Functions
Used to read/write strings

gets() puts()

The getchar() function is used to read a single character from the standard input.

The getchar() function returns an integer value of the character representation. If the system uses
the ASCII character set, then the ASCII value of the character is returned.

The general format for using this function is character_variable = getchar();

Consider the following example given below:

char ch;

ch = getchar();

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 21

The variable ch is declared as a char data type (which occupies only one byte in memory) to
store the single character read from the standard input.

The getchar() function will read only one character at a time and stores it in the variable ch.

The putchar() function transmits a single character to a standard output.

The general format for using this function is putchar(variable);, where the variable can either be
an integer or a character.

When an integer is passed to the putchar() function, the ASCII character for the given integer
value is printed.

Consider the following example using putchar():

char ch = 'A';

putchar(ch); //Displays the character A

putchar(97); //Displays the character a because 97 is the value of ASCII character 'a'

In C, a string is a sequence of characters ending with a '\0' character.

Given below is an example of a string declaration in C:

char arr[] = "CodeTantra";

Here,
arr[] is called a character array and
"CodeTantra" is called the string literal.

Note that the compiler automatically appends the above string literal "CodeTantra" wiith
a '\0' character at the end. '\0' is called a NULL character.

Strings can be declared using character arrays or character pointers. (We shall learn more about
arrays and pointers in later sections).

Like printf() and scanf(), the stdio.h file provides special methods like gets() and puts() to read
and write strings from standard I/O.

The gets(string_variable) function takes the target character array into which it reads the string
from standard input as a parameter.
Similarly, puts(string_variable or string_literal) function accepts character array or a string literal
to print it to the standard output.

The scanf() function with a format character %s reads all the characters until a whitespace
character is encountered.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 22

The gets() function reads all the characters as a string until a newline character ('\n') is
encountered (i.e., when the user presses the enter key). The string may include whitespace
characters.

The puts() function writes the given string date to the standard output.

3.14 FORMATTED OUTPUT-PRINTF & FORMATTED INPUT-SCANF

The scanf() function in the stdio.h header file is used to read data of any data type using format
characters.

The scanf() function can be used to read multiple data items at a time into variables and it returns
the total number of data items that have been read successfully in the end.

The general format of scanf() function is scanf("control_string", argument_list);br/>
where control_string contains the required format specifiers enclosed within double
quotes and argument_list contains the addresses of the memory locations where the input data is
stored. They are separated by commas.

The control_string can contain different format characters (used for reading different data types).
Each format character must be prefixed with a % character.

The frequently used format/conversion characters used to read data in different formats are listed
below:

Conversion Character Data format

%d decimal integer

%o octal integer

%x hex integer

%u unsigned decimal integer

%h short integer value

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 23

%f %e %g floating point value

%c single character

%s string

The code given below demonstrates the usage of format characters in scanf() function:

char ch;

int a;

float b;

scanf("%d %f %c", &a, &b, &ch);

Here, the scanf() function reads three data items of
types integer, float and char (using %d, %f and %c) into &a, &b and &ch respectively.

The printf() function in the stdio.h header file is used to print data of any data type using format
characters to the standard output.

The printf() function can be used to print multiple data items stored in variables. In the end, it
eturns the total number of characters printed.

The general format of printf() function is printf("control_string", argument_list);. Note that the
arguments_list is not required when there are no format specifiers.

The control_string can contain any of the format specifiers enclosed within double quotes, similar
to that of the scanf() function.

When format characters are used in the control_string, the argument_list should contain the
corresponding variables separated by commas.

The code given below demonstrates the two different ways in which printf() can be used:

#include<stdio.h>

void main() {

 int a = 20, b = 30;

 printf("The sum of two given values = %d\n", a+b);

 printf("Hello CodeTantra!");

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 24

The code given above shows the usage of the two formats:
printf("control_string", argument_list)
printf("plain text")

CONTROL FLOW

3.15 STATEMENTS AND BLOCKS

Statements

C has three types of statement.

Assignment =

selection (branching)

 if (expression)
 else
 switch

iteration (looping)

 while (expression)
 for (expression;expression;expression)
 do {block}

Blocks

These statements are grouped into blocks, a block is identified by curly brackets...There are two
types of block.

statement blocks

 if (i == j)
 {
 printf("martin \n");
 }

The statement block containing the printf is only executed if the i ==
j expression evaluates to TRUE.

function blocks

 int add(int a, int b) /* Function definition */

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 25

 {
 int c;
 c = a + b;
 return c;
 }

The statements in this block will only be executed if the add function is called. Complete function
example

3.16 IF-ELSE

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

Syntax

The syntax of an if...else statement in C programming language is −

if(boolean_expression)
 {
 /* statement(s) will execute if the boolean expression is true */
}
else
 {
 /* statement(s) will execute if the boolean expression is false */
}

If the Boolean expression evaluates to true, then the if block will be executed, otherwise,
the else block will be executed.

C programming language assumes any non-zero and non-null values as true, and if it is
either zero or null, then it is assumed as false value.

Flow Diagram

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 26

Example

#include <stdio.h>
 int main ()
{
 int a = 100;
 if(a < 20)
 {
 printf("a is less than 20\n");
 }
 else
 {
 printf("a is not less than 20\n");
 }
 printf("value of a is : %d\n", a);
 return 0;
}

When the above code is compiled and executed, it produces the following result −

a is not less than 20;
value of a is : 100

3.17 ELSE-IF

If...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very useful to
test various conditions using single if...else if statement.

When using if...else if..else statements, there are few points to keep in mind −

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in C programming language is −

if(boolean_expression 1) {
 /* Executes when the boolean expression 1 is true */
} else if(boolean_expression 2) {
 /* Executes when the boolean expression 2 is true */
} else if(boolean_expression 3) {
 /* Executes when the boolean expression 3 is true */
} else {
 /* executes when the none of the above condition is true */
}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 27

Example

#include <stdio.h>

int main () {

 /* local variable definition */
 int a = 100;

 /* check the boolean condition */
 if(a == 10) {
 /* if condition is true then print the following */
 printf("Value of a is 10\n");
 } else if(a == 20) {
 /* if else if condition is true */
 printf("Value of a is 20\n");
 } else if(a == 30) {
 /* if else if condition is true */
 printf("Value of a is 30\n");
 } else {
 /* if none of the conditions is true */
 printf("None of the values is matching\n");
 }

 printf("Exact value of a is: %d\n", a);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

None of the values is matching
Exact value of a is: 100

3.18 SWITCH

A switch statement allows a variable to be tested for equality against a list of values. Each value
is called a case, and the variable being switched on is checked for each switch case.

Syntax

The syntax for a switch statement in C programming language is as follows −

switch(expression) {

 case constant-expression :
 statement(s);
 break; /* optional */

 case constant-expression :
 statement(s);
 break; /* optional */

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 28

 /* you can have any number of case statements */
 default : /* Optional */
 statement(s);
}

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or enumerated type, or
be of a class type in which the class has a single conversion function to an integral or
enumerated type.

 You can have any number of case statements within a switch. Each case is followed by
the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that
case will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps
to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of
the switch. The default case can be used for performing a task when none of the cases is
true. No break is needed in the default case.

Flow Diagram

Example

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 29

Live Demo

#include <stdio.h>

int main () {

 /* local variable definition */
 char grade = 'B';

 switch(grade) {
 case 'A' :
 printf("Excellent!\n");
 break;
 case 'B' :
 case 'C' :
 printf("Well done\n");
 break;
 case 'D' :
 printf("You passed\n");
 break;
 case 'F' :
 printf("Better try again\n");
 break;
 default :
 printf("Invalid grade\n");
 }

 printf("Your grade is %c\n", grade);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

Well done
Your grade is B

3.19 WHILE

A while loop in C programming repeatedly executes a target statement as long as a given
condition is true.

Syntax

The syntax of a while loop in C programming language is −

while(condition) {
 statement(s);
}

Here, statement(s) may be a single statement or a block of statements. The condition may be
any expression, and true is any nonzero value. The loop iterates while the condition is true.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 30

When the condition becomes false, the program control passes to the line immediately
following the loop.

Flow Diagram

Here, the key point to note is that a while loop might not execute at all. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the while
loop will be executed.

Example

Live Demo

#include <stdio.h>

int main () {

 /* local variable definition */
 int a = 10;

 /* while loop execution */
 while(a < 20) {
 printf("value of a: %d\n", a);
 a++;
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 31

value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

3.20 FOR LOOP

A for loop is a repetition control structure that allows you to efficiently write a loop that needs
to execute a specific number of times.

Syntax

The syntax of a for loop in C programming language is −

for (init; condition; increment) {
 statement(s);
}

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you to declare and
initialize any loop control variables. You are not required to put a statement here, as
long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is
false, the body of the loop does not execute and the flow of control jumps to the next
statement just after the 'for' loop.

 After the body of the 'for' loop executes, the flow of control jumps back up to
the increment statement. This statement allows you to update any loop control variables.
This statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process
repeats itself (body of loop, then increment step, and then again condition). After the
condition becomes false, the 'for' loop terminates.

Flow Diagram

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 32

Example

Live Demo

#include <stdio.h>

int main () {

 int a;

 /* for loop execution */
 for(a = 10; a < 20; a = a + 1){
 printf("value of a: %d\n", a);
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

3.30 DOWHILE

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 33

Unlike for and while loops, which test the loop condition at the top of the loop,
the do...while loop in C programming checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except the fact that it is guaranteed to execute at
least one time.

Syntax

The syntax of a do...while loop in C programming language is −

do {
 statement(s);
} while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the
loop executes once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop
executes again. This process repeats until the given condition becomes false.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */
 int a = 10;

 /* do loop execution */
 do {
 printf("value of a: %d\n", a);
 a = a + 1;
 }while(a < 20);

 return 0;
}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 34

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

3.31 BREAK AND CONTINUE

The continue statement in C programming works somewhat like the break statement. Instead of
forcing termination, it forces the next iteration of the loop to take place, skipping any code in
between.

For the for loop, continue statement causes the conditional test and increment portions of the
loop to execute. For the while and do...while loops, continue statement causes the program
control to pass to the conditional tests.

Syntax

The syntax for a continue statement in C is as follows −

continue;

Flow Diagram

Example

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 35

Live Demo

#include <stdio.h>

int main () {

 /* local variable definition */
 int a = 10;

 /* do loop execution */
 do {

 if(a == 15) {
 /* skip the iteration */
 a = a + 1;
 continue;
 }

 printf("value of a: %d\n", a);
 a++;

 } while(a < 20);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

3.32 GOTO AND LABELS

A goto statement in C programming provides an unconditional jump from the 'goto' to a labeled
statement in the same function.

NOTE − Use of goto statement is highly discouraged in any programming language because it
makes difficult to trace the control flow of a program, making the program hard to understand
and hard to modify. Any program that uses a goto can be rewritten to avoid them.

Syntax

The syntax for a goto statement in C is as follows −

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 36

goto label;
..
.
label: statement;

Here label can be any plain text except C keyword and it can be set anywhere in the C program
above or below to goto statement.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */
 int a = 10;

 /* do loop execution */
 LOOP:do {

 if(a == 15) {
 /* skip the iteration */
 a = a + 1;
 goto LOOP;
 }

 printf("value of a: %d\n", a);
 a++;

 }while(a < 20);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 37

value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

FUNCTIONS AND PROGRAM STRUCTURE

3.33 BASICS OF FUNCTIONS

A program can be used to solve a simple problem or a large complex problem.

Programs solving simple problems are very easier to understand and identify mistakes, if any, in
them.

The steps involved in programs solving large complex problems are difficult to understand. So,
large programs are subdivided into a number of smaller programs
called subprograms or modules.

Each subprogram specifies one or more actions to be performed for the larger program, such
subprograms are called as subroutines or functions.

In some times we need to write a particular block of code for more than once in our program.
This may lead to bugs and irritation for the programmer.

C language provides an approach in which you need to declare and define a group of
statements once and that can be called and used whenever required. This saves
both time and space.

A Function is a self-contained block of statements that specifies one or more actions to be
performed for the large program.

The main reasons for using functions are:

 to improve the readability of code.
 improves the re-usability of the code, same function can be used in any program rather

than writing the same code.
 debugging of the code would be easier if you use functions (errors are easy to be traced).
 reduces the size of the code, duplicate set of statements are replaced by function calls.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 38

A C program is made up of one or more functions. Functions are classified into 2 types, they
are Library functions and User-defined functions.

Built–in functions are predefined functions, supplied along with the compiler and these can be
used in any C program. They are also known as library functions and all these functions are
available in C library.

Some of the examples of library functions are scanf(), printf(), gets(), sqrt() and so on.

The functions defined by the users are called as user-defined functions. The main() function is an
example of user-defined function because the code with in the main() is written by the user.

Let us consider the following code.

#include <stdio.h>

#include <math.h>

void main() {

 int x, y;

 printf("Enter the value : ");

 scanf("%d", &x);

 y = sqrt(x);

 printf ("The square root of %d is : %d", x, y);

}

Here main() is user-defined function and printf(), scanf(), sqrt() are library functions.

The main() function invokes other functions with in it and printf(), scanf(), sqrt() are invoked by
the main() function.

Here main() is calling function and remaining are known as called functions.

A function that invokes another function is known as calling function. A function which is
invoked by another function is known as called function. A called function may be a calling
function for another function.

User-defined functions are the functions which are defined by the user at the time of writing
program.

Functions are made for code re-usability and for saving time and space.

In C, main() is the user-defined function and first calling function in any program.

main() is a special function which tells the compiler to start the execution of a C program from
the beginning of the function main().

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 39

It is not possible to have more than one main() function because the compiler will not know
where to start the execution in such a situation.

An identifier other than keywords followed by parenthesis is recognized as a function name by
the compiler.

To make use of the user-defined function the programmer must be able to know the following 3
concepts.

 Define a Function (or) Function Definition
 Function Prototype (or) Function Declaration
 Calling a Function (or) Invoke a Function

A function definition describes what a function does, how its actions are achieved and how it is
used. It consists of a function header and a function body.

The general format of defining a function is

return_type function_name(parameters list) {

 //Local variable declarations

 //Executable statements

 return(expression);

}

The first line which heads the function is known as function header. The function header should
not end with a semicolon (;) in defining a function.

The function body follows the function header and it is always enclosed in braces. The body of
the function is combination of local variable declarations and executable statements.

Here the statements describe the actions to be performed by the function. The body of function
definition is also known as a block or compound statement.

The elements specified within the parenthesis of the function name are known
as parameters or arguments.

The general format of defining a function is

return_type function_name(parameters list) {

 //Local variable declarations

 //Executable statements

 return(expression);

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 40

}

The return_type specifies the data type of the value returned by the function.
The return_value may be of the primitive data type or empty data type.

If return_type is omitted then the default return_type of any function is int.

void is specified in the place of return_type if the function returns no value.

function_name is any valid identifier. It can’t begin with underscore because such names are
reserved for the use of C library.

The arguments in the parameter_list are known as formal parameters. Zero or more parameters
may be used. Each parameter must be preceded by its data type.

More than one parameter must be separated by commas. Parameters are used to pass the values
into the function definition. For parameter less functions the keyword void is placed within the
parenthesis of the function name.

It consists of the key word return followed by an expression within the block and it returns only a
single value to the calling function when the function returns a value.

A value or an expression may follow return if the function returns a value; otherwise nothing
follows return.

The syntax of the return statement is return(expression); (Or) return expression;.

The following points must be kept in mind while defining a function.

 A function cannot be defined more than once in a program.
 One function cannot be defined within another function definition.
 Function definitions may appear in any order.
 Built-in functions are predefined and they are available in C library that is supplied along

the compiler.

Whenever a function is invoked with in another function it must be declared before use. Such
declaration is known as function declaration or function prototype.

Function declaration always ends with a semicolon (;). The general format of the function
prototype is

return_type function_name(parameter_list);

In the above function declaration, the parameter names in the parameter_list are optional.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 41

Hence, it is possible to have the data type of each parameter without mentioning
the parameter name as shown below.

return_type function_name(data_type, data_type ... data_type);

A parameter less function is declared by using void inside the parenthesis as

return_type function_name(void);

For user understandability all the function declarations are specified before the main() function.

A function is invoked to make use of it. The general format of a function call is

function_name(var1, var2 varn);

Where var1, var2,..., varn are argument expressions. For a parameter less function, there is no
argument in the function call also.

The arguments var1, var2,..., varn in a function call are called as actual arguments.

If a function returns a value, the function call may appear in any expression and the returned
value used as an operand in the evaluation of the expression.

3.34 FUNCTIONS RETURNING NON-INTEGERS:

An argument is an expression which is passed to a function by its caller in order for the function
to perform its task. It is an expression in the comma-separated list bound by the parentheses in a
function call expression.

A function may be called by the portion of the program with some arguments and these
arguments are known as actual arguments (or) original arguments.

Actual arguments are local to the particular function. These variables are placed in the function
declaration and function call. These arguments are defined in the calling function.

The parameters are variables defined in the function to receive the arguments.

Formal parameters are those parameters which are present in the function definition.

Formal parameters are available only with in the specified function. Formal parameters belong to
the called function.

Formal parameters are also the local variables to the function. So, the formal parameters are

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 42

occupied memory when the function execution starts and they are destroyed when the function
execution completed.

Let us consider the below example:

#include <stdio.h>

int add(int, int);

void main() {

 int a = 10, b = 20;

 printf("Sum of two numbers = %d\n", add(a, b)); // variables a, b are called actual
arguments

}

int add(int x, int y) { // variables x, y are called formal parameters

 return(x + y);

}

In the above code whenever the function call add(a, b) is made, the execution control is
transferred to the function definition of add().

The values of actual arguments a and b are copied in to the formal
arguments x and y respectively.

The formal parameters x and y are available only with in the function definition of add(). After
completion of execution of add(), the control is transferred back to the main().

A local variable is declared inside a function.

A local variable is visible only inside their function, only statements inside function can access
that local variable.

Local variables are declared when the function execution started and local variables gets
destroyed when control exits from function.

Let us consider an example:

#include <stdio.h>

void test();

void main() {

 int a = 22, b = 44;

 test();

 printf("Values in main() function a = %d and b = %d\n", a, b);

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 43

void test() {

 int a = 50, b = 80;

 printf("Values in test() function a = %d and b = %d\n", a, b);

}

In the above code we have 2 functions main() and test(), in these functions local variables are
declared with same variable names a and b but they are different.

Operating System calls the main() function at the time of execution. the local variables with in
the main() are created when the main() starts execution.

when a call is made to test() function, first the control is transferred from main() to test(), next
the local variables with in the test() are created and they are available only with in
the test() function.

After completion of execution of test() function, the local variables are destroyed and the control
is transferred back to the main() function.

Global variables are declared outside of any function.

A global variable is visible to any every function and can be used by any piece of code.

Unlike local variable, global variables retain their values between function calls and throughout
the program execution.

Let us consider an example:

#include <stdio.h>

int a = 20; // Global declaration

void test();

void main() {

 printf("In main() function a = %d\n", a); // Prints 20

 test();

 a = a + 15; // Uses global variable

 printf("In main() function a = %d\n", a); // Prints 55

}

void test() {

 a = a + 20; // Uses global variable

 printf("In test() function a = %d\n", a); // Prints 40

}

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 44

In the above code the global variable a is declared outside of all the functions. So, the
variable a can be accessed in every function.

Operating System calls the main() function at the time of execution. the variable a has no local
declaration, so it access the global variable a.

In test() function also there is no local declaration of variable a, the variable a gets access from
the global.

The global variables are destroyed only after completion of execution of entire program.

All the C functions can be called either with arguments or without arguments in a C program.
These functions may or may not return values to the calling function.

Depending on the arguments and return values functions are classified into 4 categories.

1. Function without arguments and without return value
2. Function with arguments and without return value
3. Function without arguments and with return value
4. Function with arguments and with return value

When a function has no arguments, it does not receive any data from the calling function.

Similarly, when a function does not return a value, the calling function does not receive any data
from the called function.

In effect, there is no data transfer between the calling function and the called function in the
category function without arguments and without return value.

Let us consider an example of a function without arguments and without return value:

#include <stdio.h>

void india_capital(void);

void main() {

 india_capital();

}

void india_capital() {

 printf("New Delhi is the capital of India\n");

}

In the above sample code the function void india_capital(void); specifies that the function does
not receive any arguments and does not return any value to the main() function.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 45

When a function definition has arguments, it receives data from the calling function.

The actual arguments in the function call must correspond to the formal parameters in the
function definition, i.e. the number of actual arguments must be the same as the number of
formal parameters, and each actual argument must be of the same data type as its corresponding
formal parameter.

The formal parameters must be valid variable names in the function definition and the actual
arguments may be variable names, expressions or constants in the function call.

The variables used in actual arguments must be assigned values before the function call is made.
When a function call is made, copies of the values of actual arguments are passed to the called
function.

What occurs inside the function will have no effect on the variables used in the actual
argument list. There may be several different calls to the same function from various places with
a program.

Let us consider an example of a function with arguments and without return value:

#include <stdio.h>

void largest(int, int);

void main() {

 int a, b;

 printf("Enter two numbers : ");

 scanf("%d%d" , &a, &b);

 largest(a, b);

}

void largest(int x, int y) {

 if (x > y) {

 printf("Largest element = %d\n", x);

 } else {

 printf("Largest element = %d\n", y);

 }

}

In the above sample code the function void largest(int, int); specifies that the function receives
two integer arguments from the calling function and does not return any value to the called
function.

When the function call largest(a, b) is made in the main() function, the values of actual
arguments a and b are copied in to the formal parameters x and y.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 46

After completion of execution of largest(int x, int y) function, it does not return any value to
the main() function. Simply the control is transferred to the main() function.

When a function has no arguments, it does not receive any data from the calling function.

When a function return a value, the calling function receives data from the called function.

Let us consider an example of a function without arguments and with return value:

#include <stdio.h>

int sum(void);

void main() {

 printf("\nSum of two given values = %d\n", sum());

}

int sum() {

 int a, b, total;

 printf("Enter two numbers : ");

 scanf("%d%d", &a, &b);

 total = a + b;

 return total;

}

In the above sample code the function int sum(void); specifies that the function does not receive
any arguments but return a value to the calling function.

3.35 EXTERNAL VARIABLES

External variables are also known as global variables. These variables are defined outside the
function. These variables are available globally throughout the function execution. The value of
global variables can be modified by the functions. “extern” keyword is used to declare and define
the external variables.

Scope − They are not bound by any function. They are everywhere in the program i.e. global.

Default value − Default initialized value of global variables are Zero.

Lifetime − Till the end of the execution of the program.

Here are some important points about extern keyword in C language,

 External variables can be declared number of times but defined only once.

 “extern” keyword is used to extend the visibility of function or variable.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 47

 By default the functions are visible throughout the program, there is no need to declare or
define extern functions. It just increase the redundancy.

 Variables with “extern” keyword are only declared not defined.

 Initialization of extern variable is considered as the definition of the extern variable.

Here is an example of extern variable in C language

Example

#include <stdio.h>

extern int x = 32;

int b = 8;

int main() {

 auto int a = 28;

 extern int b;

 printf("The value of auto variable : %d\n", a);

 printf("The value of extern variables x and b : %d,%d\n",x,b);

 x = 15;

 printf("The value of modified extern variable x : %d\n",x);

 return 0;

}

Output

The value of auto variable : 28
The value of extern variables x and b : 32,8
The value of modified extern variable x : 15

3.36 SCOPE VARIABLES

A scope in any programming is a region of the program where a defined variable can have its
existence and beyond that variable it cannot be accessed. There are three places where variables
can be declared in C programming language −

 Inside a function or a block which is called local variables.

 Outside of all functions which is called global variables.

 In the definition of function parameters which are called formal parameters.

Let us understand what are local and global variables, and formal parameters.

Local Variables

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 48

Variables that are declared inside a function or block are called local variables. They can be
used only by statements that are inside that function or block of code. Local variables are not
known to functions outside their own. The following example shows how local variables are
used. Here all the variables a, b, and c are local to main() function.

Live Demo

#include <stdio.h>

int main () {

 /* local variable declaration */
 int a, b;
 int c;

 /* actual initialization */
 a = 10;
 b = 20;
 c = a + b;

 printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

 return 0;
}

Global Variables

Global variables are defined outside a function, usually on top of the program. Global variables
hold their values throughout the lifetime of your program and they can be accessed inside any of
the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. The following program show how global
variables are used in a program.

Live Demo

#include <stdio.h>

/* global variable declaration */
int g;

int main () {

 /* local variable declaration */
 int a, b;

 /* actual initialization */
 a = 10;
 b = 20;
 g = a + b;

 printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 49

 return 0;
}

A program can have same name for local and global variables but the value of local variable
inside a function will take preference. Here is an example −

Live Demo

#include <stdio.h>

/* global variable declaration */
int g = 20;

int main () {

 /* local variable declaration */
 int g = 10;

 printf ("value of g = %d\n", g);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of g = 10

3.37 HEADER FILES

A header file is a file with extension .h which contains C function declarations and macro
definitions to be shared between several source files. There are two types of header files: the
files that the programmer writes and the files that comes with your compiler.

You request to use a header file in your program by including it with the C preprocessing
directive #include, like you have seen inclusion of stdio.h header file, which comes along with
your compiler.

Including a header file is equal to copying the content of the header file but we do not do it
because it will be error-prone and it is not a good idea to copy the content of a header file in the
source files, especially if we have multiple source files in a program.

A simple practice in C or C++ programs is that we keep all the constants, macros, system wide
global variables, and function prototypes in the header files and include that header file
wherever it is required.

Include Syntax

Both the user and the system header files are included using the preprocessing
directive #include. It has the following two forms −

#include <file>

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 50

This form is used for system header files. It searches for a file named 'file' in a standard list of
system directories. You can prepend directories to this list with the -I option while compiling
your source code.

#include "file"

This form is used for header files of your own program. It searches for a file named 'file' in the
directory containing the current file. You can prepend directories to this list with the -I option
while compiling your source code.

3.38 REGISTER VARIABLES

In C language, each variable has a storage class which decides scope and lifetime of that
variable.

The storage class of a variable determines whether the variable has a global or local scope and
lifetime.

All variables defined in a C program are allocated some physical location in memory where
variable's value is stored. Memory and CPU registers are examples of memory locations where a
variable's value can be stored.

Storage classes provide the following information:

 Where the variable would be stored.
 What will be the initial value of the variable; i.e., the default value for the variable.
 What is the scope of the variable; i.e., if the variable is accessible globally or is local to a

function.
 What is the life of the variable; i.e., how long would the variable exist in memory.

The scope determines the parts of a program in which a variable is available for use.

The lifetime refers to the period during which a variable retains a given value during execution
of the program. It is also referred as longevity.

There are four storage class specifiers in C language, they are:

 auto
 extern
 static
 register

The general form of a variable declaration that uses a storage class is:

storage_class_specifier data_type variable_name;

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 51

At most one storage_class_specifier may be given in a declaration. If
no storage_class_specifier is specified then following rules are used:

 Variables declared inside a function are taken to be auto.
 Variables declared outside a function are taken to be global.
 Automatic variables are declared inside a block/function in which they are to be utilized.

These variables are created when a function is called and destroyed automatically when a
function is exited.

Automatic variables are private to the function where they are declared. Because of this
property, automatic variables are also referred to as local or internal variables.

A variable declared inside a function without any storage class specification, is by default
an automatic variable.

Auto variables can be only accessed within the block/function they have been declared
and not outside them.

We seldom use the auto keyword in declarations because all block-scoped variables
which are not explicitly declared with other storage classes are implicitly auto.

The format for specifying the automatic variables are

 auto data_type variable_1, variable_2,..., variable_n;

 Some of the important points regarding auto variables are:

 Storage: CPU memory
 Initial value: undefined (can be any value)
 Keyword: auto
 Scope: local to the block in which it is defined
 Lifetime: till control remains within the block in which it is defined

 A normal global variable can be made extern when it is being used much before its
declaration.

The format for specifying the external variables is

 extern data_type variable_1, variable_2,..., variable_n;

 Some of the important points regarding extern variables are:

 Storage: Memory
 Initial value: zero (0)
 Keyword: extern
 Scope: entire program
 Lifetime: throughout the program execution

 Auto variables are stored in the memory. CPU also has a small storage area
called registers which are used for quicker storage and retrieval.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 52

In C, we can suggest the compiler to store certain variables in the CPU registers by
specifying them with the storage class register.

Apart from their physical storage location, register variables follow the same rules of
scope as automatic variables.

The syntax for declaring register variables is

 register data_type variable_1;

 There may be some special cases when we want some frequently accessed variables to be
stored in registers to increase the performance of the program. In such cases we use
the register storage class while declaring the variable.

It should be noted that there is no guarantee that these variables will always be stored in
registers. When there isn't enough space in registers, they will be stored in the memory
along with other auto variables.

Care should be taken that we do not specify too many variables as register variables, as it
may even degrade the performance. If there are too many, the CPU might end up
spending too much time moving data back and forth between registers and temporary
storage area, if there are no enough registers to hold all such variables.

Ideally registers should be used only when one has good knowledge of the compiler and
the computer architecture being used.

A few points regarding register variables are given below:

 Storage: CPU registers

 Initial value: garbage value

 Keyword: register

 Scope: local to the block in which it is defined

 Lifetime: till control remains within the block in which it is defined

 When a variable is specified as static its value is persisted until the end of program.

A variable can be declared as a static variable by using the keyword static.

Auto variables are created each time they are initialized in a block and are destroyed
when they go out of scope.

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 53

However, static variables are initialized only once and they remain in existence till the
end of program.

A static variable can either be local (to a function) or global.

The format for specifying static variables is

 static data_type variable_1, variable_2,..., variable_n;

 The static variables which are declared inside a function are stored in the statically
allocated memory and remains alive through out the execution of the program, but
remember that their scope remains local to the function.

The main difference between auto and static is that the static variables do not disappear
when the function is no longer active (in scope) and their values persist across multiple
calls of the same function.

Some of the important points regarding static variables are:

 Storage: Memory
 Initial value: zero (0)
 Keyword: static
 Scope: local to the block in which it is defined
 Lifetime: throughout the program execution

3.39 BLOCK STRUCTURE

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 54

3.40 INITIALIZATION

First of all we should learn how to declare a variable in c programming language? There are two
things which need to be defined while declaring a variable:

 Data type - which type of value is going to be stored in the variable.
 Identifier - Valid variable name (name of the allocated memory blocks for the variable).

Variable initialization

In c programming language, variable can be initialized in the declaration statement of any block
(either it may main’s block or any other function’s block).

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 55

While declaring a variable you can provide a value to the variable with assignment operator.

Here is the syntax of the variable initialization

data_type variable_name=value;

Integer variable initialization

int number=10;

Float variable initialization

float value=23.45f;

Character variable initialization
char gender = 'M';
Character array/ string initialization
char country_name[]= "India";
OR
char country_name[10]= "India";
/*here 10 is maximum number of character*/
Integer array initialization
int arr[]={10,20,30,40,50};
OR
int arr[5]={10,20,30,40,50};

3.41 RECURSION

Those functions which are called by themselves are called Recursive functions. It means that the
same function is called again within itself. The function itself becomes the calling function of it.
Control is cycled within the function until a break point is reached in the program.

Non-Recursive Function
These functions are called only once from the calling function.
Eg:
/* Write C programs that use both recursive and non-recursive functions To find the factorial of a
given integer.*/

01 #include< stdio.h>

02 #include< conio.h>

03 unsigned long factrec(int);

04 unsigned long factnrec(int);

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 56

05 void main()

06 {

07 int a;

08 unsigned long f1,f2;

09 clrscr();

10 printf("\n\n\t\tENTER VALUE OF A: ");

11 scanf("%d",&a);

12 f1=factrec(a);

13 f2=factnrec(a);

14 printf("\n\n\nFACTORIAL OF %d USING RECURSIVE FUNCTION IS: %d\n",a,f1);

15
 printf("\nFACTORIAL OF %d USING NON-RECURSIVE FUNCTION IS :
%d",a,f2);

16 getch();

17 }

18 /* RECURSIVE FUNCTION*/

19

20 unsigned long factrec(int x)

21 {

22 if(x<=1)

23 return 1;

24 else

25 return x*factrec(x-1);

26 }

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 57

27

28 /* NON-RECURSIVE FUNCTION*/

29 unsigned long factnrec(int x)

30 {

31 int i;

32 unsigned long f=1;

33 if(x<=1)

34 return 1;

35 else

36 {

37 for(i = 1; i <= x; i++)

38 f=f*i;

39 }

40 return f;

41 }

OUTPUT:
ENTER VALUE OF A: 6
FACTORIAL OF 6 USING RECURSIVE FUNCTION IS: 720
FACTORIAL OF 6 USING NON-RECURSIVE FUNCTION IS : 720

3.42 THE C PROCESSOR

C language provides a collection of such header files which form the C standard library. These
files are usually available in operating systems like Linux by default.

Programmers can also create their own header files which are usually referred to as user defined
header files.

As mentioned earlier, there is a file called stdio.h among the header files present in C standard

Prepared By: Dr.S.Md.Farooq, Dept. of CSE, SREC Page 58

library, which contains the most commonly used functions to print data to console and to read
(also called scan) data.
In order to use the functions available in the header file stdio.h, the following line has to be used
in a program:

#include <stdio.h>

It makes the contents of the header file available to the compiler and the linker during the
execution of programs.
The header files are included in a program using #include directive.

The header files can be included using #include in two ways as follows:

1. #include <header_file_name.h>: This variant is used to include system header files made
available in C standard library. The compiler searches for named file in the standard list of
system directories.

2. #include "header_file_name.h": This variant is commonly used to include user defined
header files. The compiler searches for the named files only in the local or project-
specific paths.

Given below is the most commonly included header file which contains the standard input/output
functions like, printf(), scanf(), etc.

#include <stdio.h>

Here, the symbol # is called the preprocessor directive, include is called
the command and stdio.h is the header file.

In programming terminology, a macro is a pattern or a rule which specifies how a certain
sequence of text should be replaced.
C allows us to define two types of macros using the preprocessor directive #define as shown
below:

1. #define PI 3.14
2. #define MAX(a, b) ((a) > (b)? (a) : (b))

The first type of substitution has been discussed while learning about symbolic constant.
The second type can be used to define a rule or a function which works on given arguments.
Given below is the general syntax for declaring macros using #define:

#define macro_name replacement_text

#define macro_name(arg1, arg2... argn) function_expression

